

Ref: An Agile Approach to Software Contracts OK.doc 6 September 2011 Page 1 of 5
© 2011 Orchestrated Knowledge Ltd. Registered in England & Wales as Company No. 7592352 Registered address: St. Clare’s, Mill Hill, Edenbridge, Kent, TN8 5 DQ – T: +44 8432 895 174
Twitter: @OK_KnowHow Directors: P. Leeson, P. G. Rule www.orchestratedknowledge.com

Orchestrated Knowledge
Education over Information

Output Based Agreements:
An Agile Approach to Software Contracts

Outsourcing and Trust
Many commentators have suggested that the agile, incremental delivery approach is incompatible with good corporate governance of ICT
projects. Indeed, Alistair Maughan, an experienced corporate lawyer who has advised on large public and private ICT contracts including
UK HM Revenue & Custom's controversial 10-year £8.5bn deal with Capgemini, has recently argued < http://ow.ly/5Rr1F > that “Agile…
won't work in the real world” of government ICT projects. One basic argument used is that projects fail due to a “lack of trust between
customer and supplier” and hence the “Agile credo of, "Let's trust each other some more" is undermined from the start.

What do we mean by ‘trust’ in this context?

The Outsourced IT Experience
Corporate customers have learned not to trust outsourced
suppliers. Their experience has been that software projects
deliver late, over budget, and represent poor value. They are not
looking at the reasons for this; they simply trust their own
experience when it comes to negotiating new contracts. So new
suppliers start at a disadvantage.

Dialogue and case history helps a supplier build a relationship
with a potential customer, so that the client’s buying team can
feel more confident they will not live to regret the new
partnership. Many agile developers feel that the case they make
for keeping in tune with the client’s needs and delivering to
those needs is powerful enough on its own. But purchasers want
to know, first and foremost, how much it will cost and what they
will be getting for their money.

The business users value what the software does – aka the
business outcome. In an integrated Lean value stream, the
business users use the software to enhance the value delivered

by their business to their customers. But the business users do
not commission the software projects. The procurement and
retained IT folk who commission projects want assured value for
money – they don’t want their butts kicked by their senior
management for overrunning their budgets. Their performance
is measured by compliance to standard practices. Outcomes are a
secondary consideration. For them, it is all about managing the
cost.

Introducing Agility
Agile teams want to use effective methods to engage closely with
the end-users, to deliver value incrementally. But the bigger the
customer, the more divorced the procurement and retained IT is
likely to be from the business users, let alone the poor forgotten
customer. So the buyers design detailed specifications, based on
a myriad of unknowable unknowns, and ask developers to price
this fiction competitively. Developers, knowing that the
specification bears little resemblance to what is actually wanted,

Ref: Targeting Value-for-Money: Avoiding Dysfunction 2 of 5

invest money and resources in feel-good relationships and create
pricing mechanisms which pay a premium for changes.

It is this whole dysfunctional cycle of 'big design up front' aka
'batch & queue' ineffectiveness that agile developers are seeking
to buck. To achieve this revolution in a big business
environment, Agile folk need to be able to negotiate meaningful
contracts that give the customer assurance not only they will get
the desired outcomes, but that they will get it for a given price,
within a given timescale.

In the case of software, the question “how much will it cost me”
is something like asking ‘how much is wood’. But if Agile
developers simply answer the question of price with another (e.g.
‘it depends on your requirements’), the trust between the parties
has not moved forward. The intelligent customer will look for
evidence of value for money. Evidence creates trust. Assurance
which relies only on words, track record, and the ability of the
developer to amass enough supporting evidence to convince the
buyer that they will receive value for money seems to me an
immensely time-consuming task for the supplier, and provides
no concrete assurance to the customer.

The big developers employ teams of salespeople whose role is
simply to build a relationship of trust between the client and the
supplier organization. The relationship is personal, so the trust
established is subjective rather than objective. The cost of this
relationship-building is high, and the outcomes are mediocre. It
is a system that places effective, efficient, innovative SMEs at a
disadvantage and does no favours to the customer. But “no-one
gets sacked for buying IBM.”

There is dissatisfaction with the results delivered by current
methods, but there is little recognition by customers that
dysfunctional procurement and contract processes contribute
hugely to the problem. The agile SME has to persuade corporate

customers to take a new approach to contracting for software
services. The key to unlocking the impasse is to divorce the
iterative process of exploration and delivery from the process of
negotiating the price and terms & conditions.

Software as a commodity
Whatever software developers say about the work they do, those
who have responsibility for signing the cheques and
commissioning the work do regard software as commodity.
Output Based Agreements treat it as such. We know the cost of
the software will be determined by the customer’s requirements.
But scoping the types of software functionality any given
customer is likely to want is a relatively easy exercise for anyone
with the right know-how and experience. Usually there are only
a small number of software ‘types’, maybe 2 to 8 kinds, each of
which will have a different unit price based on the non-
functional requirements associated with that ‘type’ of software.
The supplier with a good understanding of their own process
costs can easily determine an acceptable unit-price for each of
the various kinds of software functionality the customer will
need.

In an Output-based Agreement, the parties agree the software
type and the required quantity of software functionality for each
new development or enhancement project, expressing the scope
in terms of the ‘functional size’ of the requirements. This is
where a modern functional size measure such as COSMIC really
comes into its own. A simple contractual arrangement can be
agreed and the need for detailed specification and prioritisation
is deferred, to be thrashed out piecemeal by the end-users and
the developers who are closest to the business need (to the
‘gemba’, as the Japanese say).

Ref: Targeting Value-for-Money: Avoiding Dysfunction 3 of 5

Determination of requirements is best described as a process of
exploration. This is true for practically all new developments and
most enhancements to existing systems. Ideally, it involves both
end-users (i.e. experts in the business domain) and technicians
(i.e. those with the know-how of what the technology can offer).
The requirements evolve as both parties learn more about what
is needed, and what is possible, through a process of feedback.
And the most pertinent feedback is derived when initial ideas
are put into operation. Then people can see how their ideas work
in practice. What is more, stakeholders benefit from incremental
satisfaction of their highest priority needs.

But this exploration (and experimentation) takes time. So it is in
the interests of both parties to get going as soon as possible. No
one benefits (except maybe the lawyers) from a long-winded
procurement process that involves time-consuming negotiations
regarding the exact details of requirements (which is, as I’ve
said, a task doomed to failure). In any case, there is no necessity
to determine the Nth level of detail up front, and significant
benefits from not doing so. By deferring commitment until the
last responsible moment, customers enable suppliers to keep
design options open, thereby maximising the potential value
delivered.

The technique used by the Output-Based Agreement is familiar
to anyone who prepares meals for a family. Say the cook of the
family goes to the supermarket for the weekly or monthly shop.
They know it is likely their family will want to eat potatoes at
several meals during the coming days. But they don't have to
decide up front and in exact detail what they will cook. That
depends on circumstances and what the family fancies on the
day. For different meals they may serve boiled potatoes, mash,
roast potatoes, jacket potatoes, potato salad, chips, wedges,
potato dauphinoise, etc. (ref: http://www.lovepotatoes.co.uk/recipes).
The choice of what to cook can be deferred to be decided until

just before each meal. All that’s written on the shopping list is,
“potatoes” and maybe “oven chips”.

So the cook buys a quantity of potatoes, say 5 kilos. For an
agreed price. Say 78p per kilo. A total cost of £3.90 GBP. Of
course, every potato is different. Some are small, some are
larger, some are a funny shape. It doesn't matter. It is perfectly
feasible for the shopkeeper and the shopper to negotiate a price
per kilo and clinch the deal.

That's essentially how an Output-Based Agreement works. The
customer and supplier agree delivery of a quantity of software
functionality, and a price that is satisfactory to both. The total
price is calculated from an initial coarse estimate of the quantity
required, say 1000 COSMIC Function Points (CFP), and an
agreed unit price, say £500 GBP/CFP. So the contract price is
agreed at £500,000 GBP.

The customer knows what their budget is; the supplier likewise
must ensure they negotiate a fair price which allows for a
suitable profit margin. This relies on having a good idea of the
process performance they achieve, and hence their unit cost for
producing software (of the kind required, using reasonably
familiar technology, etc.). Given such information, and
agreement from the customer to commit end-user effort to the
development, they will be able to commit to agreed completion
dates. They’ll be able to determine how many teams, the team
size, and number of iterations or sprints.

Experience suggests that, because there always will be some
uncertainty in the initial estimate of the quantity required (i.e.
the functional size of the functional user requirements), it is wise
for the parties to agree a tolerance (say +/– 10%) for the total
delivery.

The OBA can include clauses that cover the situation for when
the scope of the functional user requirements turns out to be

Ref: Targeting Value-for-Money: Avoiding Dysfunction 4 of 5

larger than both the initial estimate and the tolerance combined.
One way is to agree a 2nd tolerance band of another 20% say, to
permit a total requirements size of up to 1000 x 130% = 1300
CFP. I suggest a premium price is agreed for these ‘extra’
requirements, say £600 GBP/CFP, in this example. This is to
dissuade the customer staff from gold-plating their requirements
unnecessarily. The funding for such ‘extra’ requirements should
come from a ‘risk reserve’ budget, managed at a senior level, so
that the Product Owner and the Development Team have to
justify the additional expenditure. By directly linking
requirements to costs, the customer is constrained to manage
requirements intelligently and collaborate on managing scope
and costs. The supplier cannot ramp up unnecessary costs on
make-work.

A further clause can be included in the OBA to cater for the
situation when, during the early exploration of the desired
outcome, the parties determine that the initial coarse estimate is
seriously flawed. In which case, the best thing to do may be to
stop and start again.

Output-based Agreements satisfy both the customer’s need for
an assured outcome, and the suppliers desire to use effective
lean-agile methods. They introduce a need for measurement
discipline, which in turn fosters more openness and honesty in
outsourcing partnerships. They also allow like-for-like price
comparison for commodity software.

It is taken as read that all car insurers will offer you the same
basic commodity - they’ll all offer you 3rd party, fire and theft
with a no claims discount. But like for like, who gives you the
best deal? Tescos and Sainsburys will both stock a range of
baked beans and potatoes. Both will say, if you want potatoes,
we provide best quality potatoes at highly competitive prices. If
you want a ready meal, our gourmet platters are the best there

is. They compete by providing stock items at competitive prices,
and add value by providing other in-store services. The same
approach can be taken by software developers, producing basic
functionality at a visibly competitive price and leveraging the
iterative agile approach to focus on delivering the right outcome
for the customer. ‘This is not just software…it’s flexible, outcome-
focused software’!

However, as such ‘open book’ accounting of software productivity
will almost inevitably favour the smaller, more efficient software
houses, there is little interest in objective cost measurement
from the established players. It is down to the innovative players
to push for better and more effective ways of contracting
software services.

Output-Based Contracts have been used by some since the
1990s. The comparative measures of functionality which are
used to size the output have been significantly refined since their
origins in the 1980s, and modern methods map easily to Agile
approaches to scoping and managing delivery schedules, budgets
and resourcing, adding a necessary degree of business focus to
activities such as estimating and scope management. Contracts
such as these recognise the uncertainty inherent in development
and innovation, while providing the decision-makers on the
customer side with certainty on their critical requirements.
What does it cost, what am I getting for my money, will I live to
regret this deal? The Project Sponsor gets assured delivery of an
agreed scope, on time, within budget. They understand the price
and can demonstrate value-for-money. The Development Team
and the Users work together effectively to explore the demand &
deliver results incrementally. Everyone's happy.

Simple really. But isn’t that the essence of the lean, agile
approach?

Ref: Targeting Value-for-Money: Avoiding Dysfunction 5 of 5

Grant (PG) Rule
Executive Coach, Orchestrated Knowledge Ltd.

St. Clare’s
Mill Hill
Edenbridge
Kent
TN8 5DQ

T: +44 1732 863 760
M: +44 7770 503 241
E: g.rule@orchestratredknowledge.com

